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Abstract
Scattered exact and non-exact data are approximated by means of radial basis functions
with compact support and the related knot selection is based on the information given
by the discrete Gaussian curvature defined on a data triangulation. In case of non-exact
data, a strategy to obtain a sign-reliable estimate of its distribution is given extending
an approach already studied by the authors for non-exact 2D data.

1 Introduction
It is well known that, for any interpolation/approximation scheme, data shape preserva-
"tion is often a desirable quality and, as a consequence, the determination of some criteria
to establish the data shape is a very important topic. For this purpose, the use of the
discrete curvature in case of exact 2D data is a standard approach. On the other hand, in
case of non-exact data, the proposal in [6] allows the determination of a reasonable and
sign-reliable discrete curvature estimate if the maximum data error is a priori given. In
recent literature, interesting formulas have been introduced [3, 4] for defining the discrete
Gaussian curvature when scattered 3D exact data are given and a related triangulation
is assigned. Starting from these formulas, the approach considered in [6] is extended to
the case of 3D scattered non-exact data in order to define a reasonable and sign-reliable
estimate of the Gaussian curvature at the data points thereby obtaining important shape
information. Thus we get some suggestions for determining the supports of the local ra-
dial basis functions [8] used in the approximation scheme together with the number, the
position and the multiplicity of the related knots. The result is a good approximating
surface (in particular with respect to its shape) with a high data reduction [2, 7].

The outline of the paper is as follows. In Section 2 the discrete Gaussian curvature is
defined and an inequality is given to check its sign-reliability in case of non-exact data.
In Section 3 the approximation scheme is presented and the knot selection strategy is
given. Finally, in Section 4 some numerical results are presented to illustrate the features
of the proposed approach.

2 Information about the shape
In this section, following the approach presented in [3, 4], we define the discrete Gaussian
curvature (dGc) to obtain information about the shape suggested by the data. For this
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purpose, we need the following notation

"* Pxy := {Xj= (xj,yj),j = 1,...,N} c R2 is the set of the assigned distinct
vertices on the xy-plane;

* P := {Pj = (Xj,zj),j = 1,... ,N} C JR 3 is the data set, with zj f(Xj);
"* T ={j E N3, 1 _< lkj,•_ N,k = 1,2,3,j = 1,... ,T} is a given triangulation of

Pixy.

Thus, for any Xj E Pxy not belonging to the boundary of the convex hull of PxY we can
define the integral Gaussian curvature with respect to a related area Sj, [3]

ni

{'k ,

k=1

where the angles aU), k- = 1, nj are as follows

a ( ) : " Z (eU ) (U ) U ~ ) -~ ) - , U~,. , j ~ ) P ~)
k - ,k 'e1)e j)-Pk+l) k k I..nlnj+l I=

and {V?,",--•Vj} C P is the set of ordered neighboring points of Pj given by the
assigned triangulation. To derive the curvature at the vertex Pj from the above integral
value, we normalize by the Voronoi area Sj [4]

=Kj (2.1)
3 Si

If Xj is on the boundary of the convex hull of P,,, some auxiliary suitable "phantom"
points should be defined in order to obtain a reliable estimate of the Gaussian curvature
from (2.1).
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FIG. 1. The triangulation (left) and the discrete Gaussian curvature (right).

Shown on the left of Figure l'is the Delaunay triangulation related to a set Py of
441 scattered vertices in the unit square and shown on the right is the discrete Gaussian
curvature distribution related to the Franke function sampled on Py.
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In case of non-exact data, we need to check the sign-reliability of kj for deriving
some useful information about the shape suggested by the data. For this purpose, we
use the theorem below, where

Ck ._ e kl ' 11k l,...,nj,
Ck k+~ Iei )) (2.2)

/Ci (4 -• 4-h+ 1:,(jk
k=1K

Remark 2.1 Kj is an approximation of kj obtained by replacing the angle a(c) with
C(-cj)),k = 1 . ,nj.

Theorem 2.2 Let Pj E 1R3 ,j = 1,..., N be assigned distinct non-exact data points
and let e be a positive quantity such that IPj - P~f - E, j 1,... ,N, where P• is the
(unknown) exact data point corresponding to Pi. If c is sufficiently small and

Ij I > k-i U) (2.3)
k=--1 ek

then
K3jKcj > 0,

where KC is defined as Kj using the exact data points.

Proof: Let us consider a point Pj and its neighboring points {V), .... VQ cP and
let us write the corresponding (unknown) exact points as follows

Pq. : Pj - CoWo,
VU()e :=V~j) -Ckwk, k =1.,njk, k

with 0 < COf 1,.... ,E < c and IwO0 = W? .... Iw7 j = 1.

So, if c is sufficiently small, we can define the non-zero vectors
eWje := v(JC _ Pe.

and we have
e k = e k) - CkWk + C0 W 0 .

Thus, if
~k le : e(j)e I (j)e I

k I k+l

using a first order Taylor approximation, we obtain

c We = c(j)(1 + Ak) + 1 Bk + O(E2)k k le k(jklJ e~) jj"k
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where
(3) ~~(j)() ()

ek= k *wk + Ekwk+1 (' e 2 C e () 11,0 1e~PI2 +Ck+1 Iejk+2 -O Iek•I + Ie "Wo, (2.4)

Bk = -ke(j) - (j)Wk+1 o(ekj) + e(J)-- k+2k1 " k- ktlk k Wk1÷ -k+lJ W0"

Thus, we can write

= IC 1 + 2 n1 (Akc(j) + Bk + O(€2)
S=1 ek ek+l k

So, if c is sufficiently small, kjC > 0 if

Snj (Akcj) + Bk) >-12/Cj k=1 ek ]lk+11)

and this is true if
nI (A (j)I + jBk1 ) --4/5. (2.5)

21/k j= I k lc j + e(j)

Now, from (2.4) it is easy to verify that IAkl • 2c(je(j)e 1 + e~k+11) and IBkl •_
2e(ek I+ek1+1) ke k I . Using these inequalities, after a little algebra, we obtain

that, if E is sufficiently small, (2.3) implies (2.5). 0

If E is an assigned small positive quantity such that IPj -PSI E, j = 1,..., N, if (2.3)
holds we use (2.1) to define Kj because we consider it sign-reliable. Otherwise, we try
to get information about the sign of the Gaussian curvature at the point Pj, repeating
the check after substituting the neighboring points of Pj with other new suitable nj

points. In particular, these are chosen among the neighbors of all the Vj), k - 1,..., nj
and they are uniformly spaced as much as possible with respect to the azimuth (defined
relating to Pj). If after this substitution (2.3) holds the new neighboring points are used
to define Kj through (2.1), otherwise this strategy is repeated until we consider that the
new neighbors are too far from Pj. In the last case, we put the curvature value equal to
0.

3 Knot selection in radial approximation

Let R JR> 0 -* R, be a compactly supported radial basis function. We approximate the
given data by the surface

M

z(X) a0 + Ealo 11 X - Xj* 112)

where the set of knots {1X, = 1,..., M} C Py and the set of positive 6-parameters
{16, 1 = 1,... , M} are previously chosen. The coefficients a0 ,... , aM are determined min-
imizing Zj=L(zj -z(Xj)) 2 . The knot number and their positions are selected considering
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the information given by the discrete Gaussian curvature distribution as defined in the
previous section.

Inspired by the algorithm proposed in [6], the strategy for the X7 and 53, 1 = 1,.., M
choice can be summarized as follows:

* an input tolerance tOlG is given;
* a first set of distinct knots { X, 1 = 1,. . , M0 } C P,,y with Mo !_ M is chosen.

This is done selecting the areas where the absolute value of the discrete Gaussian
curvature is greater than tolG. A knot is located in the middle of an area if the sign
of the related curvature is positive. In case of negative curvature, four knots are
located near the boundary of the area also taking into consideration the suggestions
given by the data distribution;

* initial values for the 5-parameters 51, 1 = 1, .. . , MO are determined considering the
knot separation distance;

* the final set of knots is defined by possibly increasing the multiplicity of the pre-
viously selected knots. In this case, the 3-parameters associated to the same knot
must be different.

Remark 3.1 We observe that, to be sure that the least squares problem has a unique
solution, it should be proved that the related collocation matrix is of full rank and this is
clearly equivalent to the uniqueness of the corresponding interpolation problem (the only
result we know about uniqueness of the radial interpolant defined with different scales is
given in a submitted paper [1] where interesting sufficient conditions are given). However,
we believe that the least squares problem is much more robust than the corresponding
interpolation problem and in all the numerical experiments we have never had problems
related to the rank of the collocation matrix (see also [5, 7]).

4 Numerical results
In this section we use the compactly supported radial basis function [8]

O(r) := (I - r)'_(1 + 3r)

for checking the features of the proposed approach on two test functions. The first is
the well known Franke function and the second is the function z(X) = 0.35(sin(2grx) +
sin(27ry)), X E [0, 1]2. For both tests, N = 441 data points are considered. The exact
data are obtained by evaluating the functions at the vertices represented on the left of
Figure 1. The corresponding non-exact data aie defined adding a random noise to the
exact values. In particular, in the first test we have used e = 0.07 and in the second we
have used E = 0.08, in [0, 0.5]2 U [0.5, 1]2 and c = 0.008, otherwise. The related discrete
Gaussian curvature (dGc) distributions computed with the strategy sketched at the end
of Section 2 are reported in Figure 2.

Figures 3 and 4 relate to the first test with exact and non-exact data, respectively.
The distinct knots are XT = (0.207,0.205), X* = (0.449,0.797), X* = (0.756,0.349) and
each of them is repeated three times with three different 5-parameter values, 0.6,0.4,0.3.

Te enr N (Zr - z(Xj)) 2/N is about 0.016 in Figure 3 and 0.025 in FigureThe mean error Vj=1
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FIG. 2. dGc for the first (left) and second (right) set of non-exact data.
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FIG. 3. The parent Franke surface (left) and its approximation (right).

4 (it was about 1/3 using only 3 distinct knots with all the 6-parameters equal to 0.6).
Figures 5 and 6 relat e to the second test. The distinct knots are (0.258, 0.238), (0.749, 0.737),
(0.950, U.64), (0.700, 0.264), (0.756,0.050), (0.756, 0.300), (0.050, 0.751), (0.300,0.751),
(0.264, 0.700), (0.264, 0.950). The related J-parameters are 0.8, 0.8, 0.6, 0.4, 0.6, 0.4, 0.6,

0.4, 0.4,0.6. The mean error is about 0.020 in Figure 5 and 0.026 in Figure 6.
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